
Neural Networks and MIMD - multiprocessors

Jt&ka Varthala

Kimmo Kaski

February 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 90.9

NASA Cooperative Agreement Number NCC 2-387

Research Institute for Advanced Computer Sclence
An Institute of the Universities Space Research Association

(NASA-CR-188481) NEURAL NETWORKS AND
MIMD-MULTIPROCESSORS (Rese3rch Inst. for

Advanced Computer Science) 17 p CSCL 09B

G3/6Z

N92-I1697

Unclas
0043055

Neural Networks and MIMD - multiprocessors

Jukka Vanhala

Kimmo Kasld

RIACS Technical Report 90.9

February 1990

Abstract. Two artificial neural network models are compared. They are the

Hopfield neural network model and the Sparse Distributed Memory

model. Distributed algorithms for both of them are designed and implemented.

The run time characteristics of the algorithms are analyzed theoretically and

tested in practise. The storage capacities of the networks are compared.

Implementations are done using a distributed muir]processor system.

This work has been supported partly by the Center for Technological Development in Finland

(TEKES) and at RIACS by NASA Cooperative Agreement NCC2-387. Kaski spent a part of his

sabbatical year from Tampere University of Technology, Finland, as a visitor at RIACS.

Neural Networks
and

MIMD - multiprocessors

Jukka Vanhala and Kimmo Kaski

Tampere University of Technology

Mierr_lectronics Laboratory

P.O.Box 527, SF-33101 Tampere, Finland.

Abstract

Two artificial neural network models are compared. They are the
Hopfield neural network model and the Sparse Distributed Memory
model. Distributed algorithms for both of them are designed and
implemented. The run time characteristics of the algorithms are analyzed
theoretically and tested in practise. The storage capacities of the
networks are compared. Implementations are done using a distributed
multiprocessor system.

I. Introduction

Artificial neural network models are originated from theoretical neurobiology but they

serve as practical tools for computing. Neural networks are highly connected systems con-

sisting of simple threshold units. Their inherent parallelism, fault tolerance and learning

ability makes them very useful when the conventional methods fail or perform poorly. On

the other hand their massive parallelism and high connectivity also makes them hard to im-

plement on traditional computer architectures. To make it a bit easier we have tried to an,

alyze some aspects of running neural networks on a distributed multiprocessor.

This paper compare s two implementations of neural network models, namely the Sparse

Distributed Memory model [Kanerva -88] and the Hopfield neural network model [Hop-

field -82]. The mathematical formulations for both of these models are shown in reference

[Keeler -86]. The Sparse Distributed Memory model (SDM) is in many respects compara-

ble to the Hopfield neural network model. The ideas behind these models are quite different

but the resulting behavior is very similar. Both of them can function as an autoassociative

memory and both utilize the Hebbian learning rule. Both network algorithms are imple-

mented on a distributed Transputer based multiprocessor and their behavior is analyzed.

1.1 Hopfield model

Hopfield network is a fully connected network with a symmetric weight matrix. It can be

thought as having two layers,inputand output_Ifthe outputisfed back to the input,the

network becomes effectivelya one layernetwork.

Initialconfigurationisloadedintothe network and itisthenreleasedtoevolve freely.After

the network has converged to a stationarystate,the outputcan be read out.Each neuron in

the network decides itsstateusing the followingequations:

vi (t) = Ci#s i (t)

s i (t') = sign (v i (t))

Where si is the state of the i th neuron, either 1 or - 1 and v. denotes the potential induced

to i th neuron by all other neurons. There are two basic strategies to calculate v.(t) and s.(t')
1 | .

values. The classical way is to pick one neuron at random and solve both equations for it

updating the new state of the neuron immediately. The method is referred to as asynchro-

nous updating. The other strategy is to calculate first potentials the v. for each neuron and

then update the new state values si(t') simultaneously. This is refcrr_xl to as synchronous

updating. The later approach is more suitable for implementation in a distributed environ-
ment as will be seen later,

1.2 SDM model

Sparse distributed memory can be described either using concepts of digital computers or

using concepts of neural networks. Viewed from outside, SDM has address and data buses

and read-write control. The data bus and the read-write control function similarly to a con-

ventional random access memory (RAM) system. The address space of a RAM system is

small, i.e. of the order of 216 to 2 yz. On the other hand the address space of SDM may be

very large, for instance of the order of 21°°° , It is clear that this much of actual memory can

not be implemented (since 2 lm° exceeds the number of atoms in the universe). In $DM, the

huge address space is covered sparsely with randomly chosen addresses. When data is writ-

ten to SDM, its address is very likely pointing to a nonexistent memory location. Thus the

written data is distributed to those actual memory locations whose addresses differ from the

desired address by only a small amount. When the data is written into a conventional RAM,

the old data is lost. In SDM, new data will be superimposed with the old data in memory.

Thus every bit in the memory has to be a counter rather than a one-bit register. If the address

space is 21°°° and the SDM system implements say 216 storage locations, these cover one
address in 2984.

In figure 1, the internal structure of a possible implementation of SDM is shown [Keeler -

86]. There are two matrices A and C. A is used to store the addresses of those memory lo-

cations that are actually implemented. C is a matrix of counters which stores the informa-

tion written into SDM. When the memory is accessed, the address vector a is compared

with storage addresses. The selector vector s has elements set to one corresponding to each

address in matrix A which is close enough to the original address in terms of the Hamming

distance.When doing a write operation, da_,a d is accumulated at every counter location in

matrix C as selected by s. Bits which are one in d, increment the value of the counter, and

bits with value zero decrement it. Reading from SDM proceeds much the same way as writ-

ing. The addresses are compared and the selector is formed. Then every selected memory

word is summed together and tresholded with zero to give the output data d'. Thus the out-

put has one-bits for non-negative values and zero-bits for negative values of the sum.

Although the idea of SDM can probably be explained most clearly using conventional com-

puter concepts, it can also be viewed as a three layer feed forward network. If the address

length is m, the data length is d and the number of actual storage locations is p, SDM is an

m-p-d network, i.e. it has m nodes in the input, p nodes in the hidden and d nodes in the

output layer. This view of the model shows the close relationship between SDM and the

models normally denoted as neural networks.

2. Distributed algorithms

The most critical problem in implementing neural networks on distributed computers or as

a matter of fact on silicon is the communication overhead. Since the network is (often) fully

connected, every time a neuron decides to chance its state the new value has to be distrib-

uted to every other node. The communication delay between processing elements makes

the convergence of the network unsure or at least has a potential effect on choosing the final

configuration the network will eventually converge to. It is also very difficult to build a sys-

tem with a high number (m) of nodes and full connectivity since the number of connections

grows as m 2. Thus, if the network is implemented in a straightforward manner, the commu-

nication channels have to be multiplexed which still slows down the operation.

We have implemented distributed algorithms for both network models. The algorithm for

the Hopfield network is a well known solution for calculating systems with long range in-

teractions, namely the n-body problem algorithm. The algorithm for SDM is derived from

the model presented in figure 1.

2.1 Hopfield algorithm

Implementing a Hopfield type network using asynchronous updating gives rise to commu-

nication problems. After each update the new state value must be distributed to all other

processor. In fact this forces the system to proceed sequentially without any profit from

multiple processing elements. Processors may be allowed to calculate new states for neu-

rons they axe allocated using old state values of foreign neurons which have not yet been

updated due to communication delay. This does not reduce the communication but lets the

processors run (very probably doing wrong updates) which would further slow down the

operation.

On the other hand if the network implementation is allowed to usesynchronous updating,

it can be implemented efficiently on a multiprocessor machine by the n-body problem al-

gorithm. Processors are connected to form a ring topology. Another commonly used topol-

ogy is a hypercube, which can also be used since a ring topology can be embedded in hy-

percube topology. Each processor is assigned a group of neurons (assuming that the number

of neurons in the network is greater than the number of processors) and their corresponding

4

Addressin:a
rllllllllll]tt

,i,

Addresses: A

Seloct: s

Data in: d
fill till,ill If!

Counm"s; C

i

J

]

sm
II !11 ! I I 1ll III

llllllllllllll

Figure I. Internal structure of a possible implementation of the SDM.

weight matrix elements. For each neuron there is a packet that travels around the ring and

accumulates the potential created by other neurons. During a visit the processor calculates

the effect of its neurons on the visitor. After visiting all other neurons, the packet arrives to

the neuron it is assigned to. From the accumulated potential the neuron can decide its next

state. Since all neurons use the old state values of all other neurons, the whole network is

updated synchronously.

This does not reduce the communication but keeps the processors occupied, h should be

said that this idea does not faithfully foUw the dynamics through the state space, as de-

scribed by the Master equation. On the other hand near the stationary sates of the network

this updating scheme should be in average sufficiently accurate.

2.2 SDM algorithm

Since SDM can be described without referring to a network model with high connectivity,

it seems to lack the communication overhead problems. Every operation and data structure

is well localized. The address matrix A, selector vector s and the counter matrix C can be

sliced horizontally without difficulty. The only necessary communication is to distribute

the initial address and data (only address in read operation) and to collect the sums from

counters. The matrix A can also be implemented as a pseudo-random number generator

which gives the same sequence of location addresses every time the selector s is calculated.

3. Storage requirements

The information in the Hopfield model is stored in a symmetric m*m weight matrix W

where m is the length of the input pattern. As W is symmetric, it would suffice in theory

to store only half of the matrix. We have not used this optimization since it would impose

more complexities to the distributed algorithm. Weight values are obtained by Hcbbian

learning rule. A weight value w i. is increment for every pattern that has bits i and j in the

same state. If these bits differ _ weight value is decrement. For random patterns (which

we have used) there is no correlation between bits and thus the weight values tend to be

small. Even for our largest test case the maximum number of patterns is ~100. If some of

the bits in patterns were clamped to say one, this would generate a weight value of ~100.

Thus we have chosen to use 8 bit bytes to present weights. This gives us a range -128 ...

127. We have not encountered overflows.

The weight matrix has been divided between the processors. There is thus no redundant in-

formation stored (other than the symmetrical parts of the matrix). The processor that

"owns" neurons sil ... st2 stores the weight matrix rows wil ... w_2. The processor is then al-

ways capable of calculating the effect of its own neurons to any other neuron.

SDM stores information in a m*p table, p equals m for an SDM system with about the same

storage capacity as a Hopfield network with input size m. In this case the information den-

sity is the same for both network types. The reasoning for the implementation of a Hopfield

type network to use 8 bit counters also holds for SDM.

The address matrix A and the counter matrix C have been divided in equally sized parts to

each processor. Although this method is not mandatory and we in fact lose Mbytes of mem-

ory due to imbalance in our system memory configuration, it balances the processing load
between nodes. The location address matrix A is stored in packed format, i.e. a 1024 bit

address occupies 32 words of 32 bit memory. If we take matrix A into account when cal-

culating information densities we get -10% lower result (ff p = m).

4. Capacity

A definition for the capacity of SDM is, according to [Kanerva -88], the size of the data

set for which the probability of reading a given pattern correctly from the address it was

written in is 0.5. As the capacity scales linearly with the number of storage locations p, it

is convenient to give a capacity factor c which gives the capacity as a multiple of the num-

ber of storage locations. Factor c depends on the length of patterns and for our test cases it

is c=0.13 for m=256, c=0.11 for m=512 and c--0.098 for m=1024.

The capacity of the Hopfield network has been studied in literature extensively both exper-

imentaUy and with mathematical rigor. Reference [McEliece -87] gives the upper limit m/

(21ogm) for storing patterns of size m given that most of the written patterns must be re-

called correctly. In our case this gives c=0.090 for m=256, c=0.080 for m=512 and c=0.072

for m=1024. This is lower than in the case of SDM. The difference might be due to the fact

that [McEliece -87] requires that every written pattern has the basin of attraction circle

non-zero whereas [Kanerva -88] lets it to become a point in the address space. These dif-

ferences are small and it is justifiable to expect a capacity of about e=0.1 ... c=0.15 for both

systems depending on the actual set of patterns and the requirements for the correcmess of
recalled patterns.

If a pattern is not recalled correctly, the read chain may either converge to a stable but spu-
rious state or diverge to a chaotic wandering trough the space with no fixed destination.
Since Hopfield type network relies on the analogy to a physical terms of energy, it will al-
ways converge to a fixed state, be it real or spurious. In SDM the error is often of the latter

chaotic type. Convergence in the Hopfield network will quite often give a result that is very
near the perfect result and depending on the case the slightly erroneous answer may be us-
able. On the other hand ff the network always gives an answer it is hard to say anything

about the quality of the answer. In $DM the chaotic behavior is easy to distinguish from the
fast convergence to a corr_t answer. This gives a way to differ between right and wrong
answers.

5. Run time performance

The most interesting performance

speedup factor [Fox -88]
measure of a multiprocessor implementation is the

S(N) = --
T(1)

T(_V)

where S(N) is the speedup factor depending upon the number of processors N and T(N) is
the run-time of a calculation in an N processor system. T(1) is of course the run time on a
sequential machine. S0,1) tells what is the average utilization of the N processors in the sys-
tem. For example if S(N) = 9 for a 10 node machine the processors are working on the prob-
lem 90% of the time and communicating and processing "house keeping" information 10%
of the time.

he speedup factor can also be given by the equation

N
S (N) = --

l+f_

where fc is the fractional communication overhead. It can be thought as the fraction of the
total run time spent on communication. It can be written

fc ""

ct_

Here c is a constant that depends on the characteristics of the algorithm and is normally in

the range 0.1.. 10. dois the dimensionality of the problem, n is the grain size i.e. the amount

7

of work assigned to each node. tc and tw are constants typical to each computer system de-

noting the limes to communicate one word of data from one processor to another (re) and

to make one typical calculation (tw). For example ff S(N) = 9 and N ffi I0 then fc = N/S(N)
- I = 10/9- I = 0.II.

5.1 Hopfield network

In a Hopfield network, the inner product of the weight matrix row C i and state vector S must

be computed for one update of neuron i. This results in the computational complexity of p

multiplications and p additions, in which p is the number of neurons in the network. The

threshold function must also be computed, thus giving the total complexity of O(2p+ 1). For

one synchronous update for the whole network, p neurons calculate their next state giving

the complexity O(2p2+p). If asynchronous updating is used, it can be thought that one up-

date for the whole network involves p randomly chosen neurons to be updated. This yields

the same complexities as above. Using modified n-body algorithm, the processor network

with N processors passes N data packets of size p/N in N steps. Thus the communication

has the complexity of O(N p/N N) = O(Np).

The combined run time for the Hopfield network algorithm is

T(N) = N(tp+t r)

where t is the time for calculating the potentials and tr is the time for rotating data. Thep
algorithm works in N steps thus the factor N. The calculation time can be given

where n = p/N is the number of neurons assigned to each processor and tWis the time for

calculating one synaptic interaction. Rotating the cumulative values in the ring takes

tr -- n I c

This gives the fractional communication overhead of

ntc 1 tc

fc- n2tw - nt w

This shows that the dimensionality of the problem is tip ffi 1, as it should be for long range
interaction problems.

The sequential parts of the implementation are not considered above. It might be relevant,

since ff the sequential part of the algorithm takes a fraction s of the total run time on a se-
quential machine, then it is impossible to achieve greater speedup factor than s -_.This is the

famous Amdahl's law. The solution to this problem is in that the bulk of the computation
supersedes almost completely the sequential parts of a typical scientific problem with even
a modest size.

5.2 SDM

In order to retrieve data from SDM, p hamming distances, H*d additions and d threshold

functions must be computed. Here p is the number of actual storage locations, d is the

length of the address and the data, and H is the number of storage locations that will be se-
lected on average. Thus the overall complexity is O(p+Hd+d). in a fair comparison with the

Hopfield network d = p and H equals the square root of p giving the complexity O(dp+p 3/

2+d) = O(1F+p3_+p) which is the same as for the Hopfield network.

The communication structure of the SDM implementation is very simple. If we again forget
the sequential part, there is no communication at all! This would give the problem dimen-
sionality dp= 0 and thus zero fractional communication overhead and linear speedup with
any number of N and value of n. SDM differs from the Hopfield network in that where the
master processor of the latter algorithm collects only ready answers from the network, the

master processor of SDM still has to add and threshold all results obtained from other pro-
cessors. It seems thus fair to consider this as a part of the SDM algorithm. With sequential
parts added we get a decrease in performance by Amdald's law. Thus the run time is

T (IV)= 2Nmt c+ Nmt t+ ntw = Nm (2tc+ tt)+ ntw

The fh-st term of the sum denotes the time required for sending the initial configuration to

every processor and for collecting the results back to master processor. The second term is
the sequential part of the algorithm where subtotals of length m from N processors are han-

dled. The third term denotes the time taken by processing the n - p/N elements stored on
each node. The fractional (communication) overhead is

2tc + t t
f_ --Nm_

ntw

Although fc depends heavily upon the number of processors N, the overhead is small as
long as p>>N. As we have compared Hopfield type network with SDM, m has been chosen

to be equal to square root of the total number of neurons p. This does not have to be the case
and normally p is limited by the amount of available memory on each processor. In our sys-

tem we are able to store -22o elements per node. Contrasted to a typical number of proces-

sors (-2 s) and size of m (~2t°), the overhead is still of the order of 2 .4 ... 2 s.

To avoid the sequential part of the algorithm, one could slice the counter matrix of SDM

vertically. Then every node has a slice of every word in the memory. This has the drawback

of generating the location address matrix to every node. One solution is to generate location

addresses by a pseudo-random number generator simultaneously with the Hamming dis-

tance calculation. In this way only the seed for the generator has to be stored. A good ran-

dom number generator may be too time consuming to run as a part of a simulation on a gen-

eral purpose computer, but as a part of a VLSI implementation the method could be feasi-
ble.

6. Simulations

Simulation studies of the Hopfield type network and SDM are shown. Implementations

were designed so that the results will be comparable. The same processor network topology

is used for both network models and they are used to solve the same problem with same

training and test sets.

6.1 Environment

Simulations were run on a 10 node Transputer multiprocessor. Each node has a TS00-pro-

cessor and at least 1 Mbyte of memory. The system has been installed in a "dummy" PC/

AT chassis from which it only gets its main power. This unit is connected via one INMOS

link to a Transputer card installed in another PC/AT which is used as a console and a file

server. All 10 nodes in the machine are connected in a pipeline. The fast node (the one con-

nected to the PC/AT) is the master node having the reset and error lines in its control. A

ring topology would be better in terms of run time performance because the Hopfield algo-

rithm has ring communication topology.

The only software tool used was Logical Systems Transputer Toolset which has a C com-

piler with normal back end tools and run time libraries. A general purpose message passing

communication kernel was written and used for developing the network implementations.

Since all communication is delayed by the message passing routines, the run times are

much longer than they would have been if raw channel communication had been used in-

stead. On the other hand the system development has been much easier and faster since the

use of the message passing routines have hidden the topology of the machine and have

made debugging possible. We have tried to make relevant analysis of the run times by sub-

stracting the effects of delayed communication.

6.2 Training sets

The training was done using a set of patterns generated with a linear shift register random

number generator. The same training set was used for both network types in all simulation

runs. The quality of the random numbers seems to have a great effect on the performance

of the networks. For example the random number generator rand0 which is included in the

C libraries gave much worse results in terms of capacity.

10

6.3 Capacity

In order to test the capacity of the networks, the patterns in the training set were stored in

the network one at a time. After each write operation all previous examples in the training

set were tested by reading from their write address. The patterns not recalled correctly were

counted. Also patterns differing more than 1% from the original were counted to give _me

indication of the quality of the returned pattern. The results of the simulation runs arc

shown in the figures 2, 3 and 4, which give the percentage of correctly recalled patterns as

a function of the number of written patterns, n is the size of the network.

For m = 256 both networks exceed clearly their theoretical capacity factors. SDM should

give 50% correct patterns at the limit of 33 written patterns. The Hopfield network should

saturate at 22 patterns. Both networks almost double the limit. Same kind of behavior is

also apparent in the two other cases but with smaller marginal.

11.o _'". _ '-I. I "' "1' "' 11_'' I I " 11.o

lOO _ lOO

po: oo

'I, I
:r. ,iiii °

,. I. ,I I ! I,,. ao
0 10 20 SO 40 60

-,ember of lmLtm'ns

Figure 2. Capacity, m=256

eo 70

.... I''"'1 I I I I'"

:,,..I l I I J..... !
80 40 60 (tO ?0 80 gO 100

numb_ of pattm-a_

Figure 3. Capacity, m=512

For the Hopfield network, notably only about 5% of the incorrectly recalled patterns dif-

fered more than 1% from the original at the limit, where 50% of the patterns were recalled

correctly (for n = 1024, not shown in the diagram). For SDM, almost all incorrectly recog-

nized patterns diverged and only a minimal fraction converged to a stable state near the cor-

rect answer.

SDM is very sensitive to the cutoff limit parameter as is shown in figures 6 and 7. They

present the relative performance of the SDM network with 256 storage locations for some

values of the cutoff parameter. If the value is less than optimal (here 111), the network has

difficulties to learn even a small number of patterns correctly. On the other hand, since ev-

11

1°f' ' ' ' I I i I I I -

40 ,,,I I I I ! I
40 60 60 100 120 140 160 IBO

n_b_- _ patt.on_

Figure 4. Capacity,m=1024

100

1
60

I I I'":

--1'230 I

_ 2. 22g

I I E
• I I I,.,

100 800 300400
n-,,,,llNer o1')pm._

Figure 5. Scaling of capacity, legend shows the
size multiplier and the cutoff value (m=512).

cry pattern is written in fewer storage locations, they do not overlap so easily. Thus the net-

work is able to store a great number of patterns although with smaller probability to get

them right. This is easy to see in the diagrams as the solid line denoting the low cutoff value

drops below I00 % inthevery beginningbut has a smallerdecreasein theend.Ifthecutoff

parameter istoo high,theSDM network behaves badly inthebeginning but has very steep

slope in theend.

110_''''1 I I I I'_ 110 I I I I I"

SO0 100

v"" •....... .t L\ _...

xT_ _ v

.,D..qr.._ t _. veb. ,._ ...1 109

%_ . 60111
20 112

_or,... I I I_L. [';',. l._.,_t._ 5o ... I., ..1 I I I,
0 20 40 60 80 100 120 0 6 10 15 20 25

number of patterns number of patternJ

Figure 6. The effect of cutoff limit Figure 7. The effect of cutoff limit magnified

12

Figure 5 shows how thecapacityof SDM scaleslinearlywith thenumber of storageloca-

tions.There arc fourruns with the compoud amount of storagemultipliedby a factorof 2

in each run.As the x-scaleislogarithmic,the linesshould be equally spaced which isthe

case here.

6.4 Run time performance

We measured the elapsedrun time forboth networks with two problem sizes,scc Table I.

The speedup factor S(N) and scaled run times are shown in figures 8 and 9 for network

sizes1024 and 2048, respectively.

Number of
processors

1

2
4
8

I
3
4
6
8

Size of the
network

1024

2O48

Hopfield SDM

378 22.7
193 14.4
137 11.1
88 9.84

1512 90.8
37.2

530 31.0
24.7

275 22.0

Table 1. Run times of the simulations (in seconds for 10 store and 50 retrieve operations)

6

!S

2

1

0
0 1 I :J 4 5 8 ¥ $

-,umber ef];.-oom_n (]4)

Figure 8. Run times and speedup, m=1024

"l I i I I I I I'"_ ?_: I I I I i I I"_'i'"_ 1

.... I I I 1,...I ! 1.... I,,,,1 o ,,,'1 I ! I,,,LI I I l,,,
O 0 1 2 3 4 5 8 T 8 g

n-,-bGr ot];.-ooem_n(_T)
Figure 9. Run time and speedup, m=2048

13

We have measured time constants for communication and calculation approximately. The

values are

Especially the communication time tc varied much, almost an order of a magnitude. This is

because the processor network topology of our simulation environment is far from optimal.
The calculation time has a smaller variance. Note that the run times for SDM are about 10

times shorter than for the Hopfield network. On the other hand, the curves show that with

the tested network sizes, the speedup of SDM starts to level off while the Hopfield still

gives linear speedup. The fractional (communication) overhead for both networks is given

in table 2.

Table 2 and the diagrams clearly show the effect of grain size. m = 2048 seems to be enough

for the Hopfield algorithm beyond the tested 8 processors. For SDM, the speedup curve

bends already at about N-3. This implies that the SDM algorithm is lighter to calculate and

the grain size should be increased further.

" k

equation diagram

Hopf SDM Hopf SDM

N = 4 m = 1024 0.24 0.96 0A5 0.95

m = 2048 0.12 0.48 0.41 0.37

N = 8 m --1024 0.47 3.80 0.86 2.46

m = 2048 0.23 1.89 0.46 0.94

Table 2. Fractional communication overhead.

7. Discussion

Both of the networks, the Hopfield network and SDM, gave expected results in terms of

capacity for correctly recalled patterns. The difference in run times were bigger than we

thought. Also we expected better speedup factors for the SDM model.

The run time tests were difficult to do using our current processor network topology. The

main reason for this reflects in the inbalance of time constants tc and tw. For a well balanced

system these values should be about the same rather than differ with a factor of 30.

Although the Hopfield model is not very usable in real world systems its behavior serves

as a good basis for testing the performance of other network models. The behavior of SDM

14

was found to be very similar to the behavior of the Hopfield network. The possibility of

scaling the capacity of SDM makes it more suitable for practical applications.

8. Acknowledgements

This work has been supported partly by the Center for Technological Development in Fin-

land CI'EKES) and NASA Ames Research Center, RIACS (Cooperative Agreement Num-

ber NCC 2-387). Kimmo Kaski would also like thank RIACS' SDM-group for its kind hos-

pitality and enlightening discussions.

References:

[Hopfield -82] JJ.Hopfield: "Neural Networks and Physical Systems with Emergent Col-

lective Computing Abilities", Proc. Nat. Acad. Sci. U.S., Vol. 79, Apr. 1982.

[Kanerva -88] P.Kanerva: "Sparse Distributed Memory", The MIT Press, Cambridge Mas-

sachusetts, 1988.

[Keeler-86] J.D.Keeler: ,'Comparison Between Sparsely Distributed Memory and Hop-

field-type Neural Network Models", RIACS Technical Report 86.31, NASA Ames Re-

search Center, Dec. 1986.

[McEliece -87] R.J.McEliece, E.C.Posner, E.R.Rodemich, S.S.Venkatesh: "The Capacity

of the Hopfield Associative Memory", IEEE Transactions on Information Theory, Vol. IT-

33, No.4, Jul 1987.

[Fox -88] G.Fox, M.Johnson, G.Lyzenga, S.Otto, J.Salmon, D.Walker: "Solving Problems

on Concurrent Processors, Volume 1", Prentice-Hall Englewood Cliffs, New jersey, 1988.

